Groups and Semigroups Defined by some Classes of Mealy Automata

نویسندگان

  • Alexander S. Antonenko
  • Eugene L. Berkovich
چکیده

Two classes of finite Mealy automata (automata without branches, slowmoving automata) are considered in this article. We study algebraic properties of transformations defined by automata of these classes. We consider groups and semigroups defined by automata without branches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups and Semigroups Defined by Colorings of Synchronizing Automata

In this paper we combine the algebraic properties of Mealy machines generating self-similar groups and the combinatorial properties of the corresponding deterministic finite automata (DFA). In particular, we relate bounded automata to finitely generated synchronizing automata and characterize finite automata groups in terms of nilpotency of the corresponding DFA. Moreover, we present a decidabl...

متن کامل

On Torsion-Free Semigroups Generated by Invertible Reversible Mealy Automata

This paper addresses the torsion problem for a class of automaton semigroups, defined as semigroups of transformations induced by Mealy automata, aka letter-by-letter transducers with the same input and output alphabet. The torsion problem is undecidable for automaton semigroups in general, but is known to be solvable within the well-studied class of (semi)groups generated by invertible bounded...

متن کامل

The finiteness of a group generated by a 2-letter invertible-reversible Mealy automaton is decidable

We prove that a semigroup generated by a reversible two-state Mealy automaton is either finite or free of rank 2. This fact leads to the decidability of finiteness for groups generated by two-state or two-letter invertible-reversible Mealy automata and to the decidability of freeness for semigroups generated by two-letter invertible-reversible Mealy automata.

متن کامل

The finiteness problem for automaton semigroups is undecidable

The finiteness problem for automaton groups and semigroups has been widely studied, several partial positive results are known. However we prove that, in the most general case, the problem is undecidable. We study the case of automaton semigroups. Given a NW-deterministic Wang tile set, we construct a Mealy automaton, such that the plane admits a valid Wang tiling if and only if the Mealy autom...

متن کامل

A Connected 3-State Reversible Mealy Automaton Cannot Generate an Infinite Burnside Group

The class of automaton groups is a rich source of the simplest examples of infinite Burnside groups. However, there are some classes of automata that do not contain such examples. For instance, all infinite Burnside automaton groups in the literature are generated by non reversible Mealy automata and it was recently shown that 2-state invertible-reversible Mealy automata cannot generate infinit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta Cybern.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2007